Skip to main content

How to configure Static DMVPN or Static Mapping?

 

Dynamic Multipoint Virtual Networks (DMVPN)

DMVPN is a Hub-and-Spoke topology and the main tool to create VPNs is combination of mGRE. The registration process can be conducted via Static or Dynamic. click here for all the theories about DMVPN and MPLS.



1. Introduction of MPLS

2.What is MPLS Label distributing protocol (LDP) ? How LDP works?

3.how to configure MPLS LDP Peering ?

4.What is MPLS L3 VPN ? How to configure?

5.How to configure MPLS L3 VPN with RIPv2 ?

6.How to configure MPLS L3 VPN with EIGRP ?

7.How to configure MPLS L3 VPN with OSPF ?

8.What is OSPF Sham Links? how to configure OSPF Sham Links?




 In this section we are going to configure Static DMVPN or Static Mapping.






R1(config)#interface fastEthernet 0/0

R1(config-if)#ip address 192.168.1.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit


R1(config)#interface loopback 0

R1(config-if)#ip address 1.1.1.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit


R2(config)#interface fastEthernet 2/0
R2(config-if)#ip address 192.168.2.2 255.255.255.0
R2(config-if)#no shutdown
R2(config-if)#exit

R2(config)#interface loopback 0
R2(config-if)#ip address 2.2.2.2 255.255.255.0
R2(config-if)#no shutdown
R2(config-if)#exit

R3(config)#interface fastEthernet 2/1

R3(config-if)#ip address 192.168.3.3 255.255.255.0

R3(config-if)#no shutdown

R3(config-if)#exit


R3(config)#interface loopback 0
R3(config-if)#ip address 3.3.3.3 255.255.255.0
R3(config-if)#no shutdown
R3(config-if)#exit


R4(config)#interface gigabitEthernet 3/0
R4(config-if)#ip address 192.168.4.4 255.255.255.0
R4(config-if)#no shutdown
R4(config-if)#exit


R4(config)#interface loopback 0
R4(config-if)#ip address 4.4.4.4 255.255.255.0
R4(config-if)#no shutdown
R4(config-if)#end

R5(config)#interface fastEthernet 0/0
R5(config-if)#ip address 192.168.1.5 255.255.255.0
R5(config-if)#no shutdown
R5(config-if)#exit

R5(config)#interface fastEthernet 2/0
R5(config-if)#ip address 192.168.2.5 255.255.255.0
R5(config-if)#no shutdown
R5(config-if)#exit

R5(config)#interface fastEthernet 2/1
R5(config-if)#ip address 192.168.3.5 255.255.255.0
R5(config-if)#no shutdown
R5(config-if)#exit

R5(config)#interface gigabitEthernet 3/0
R5(config-if)#ip address 192.168.4.5 255.255.255.0
R5(config-if)#no shutdown
R5(config-if)#exit

R1(config)#ip route 0.0.0.0 0.0.0.0 192.168.1.5
R1(config)#end

R2(config)#ip route 0.0.0.0 0.0.0.0 192.168.2.5
R2(config)#end

R3(config)#ip route 0.0.0.0 0.0.0.0 192.168.3.5
R3(config)#end

R4(config)# ip route 0.0.0.0 0.0.0.0 192.168.4.5
R4(config)#end


R5(config)#ip route 192.168.1.0 255.255.255.0 192.168.1.1
R5(config)#ip route 1.1.1.0 255.255.255.0 192.168.1.1
R5(config)#ip route 192.168.2.0 255.255.255.0 192.168.2.2
R5(config)#ip route 2.2.2.0 255.255.255.0 192.168.2.2
R5(config)#ip route 192.168.3.0 255.255.255.0 192.168.3.3
R5(config)#ip route 3.3.3.0 255.255.255.0 192.168.3.3
R5(config)#ip route 192.168.4.0 255.255.255.0 192.168.4.4
R5(config)#ip route 4.4.4.0 255.255.255.0 192.168.4.4
R5(config)#exit

R1(config)#interface tunnel 1
R1(config-if)#ip address 100.1.1.1 255.255.255.0
R1(config-if)#tunnel source 192.168.1.1
R1(config-if)#tunnel mode gre multipoint
R1(config-if)#ip nhrp network-id 123
R1(config-if)#ip nhrp map 100.1.1.2 192.168.2.2
R1(config-if)#ip nhrp map 100.1.1.3 192.168.3.3
R1(config-if)#ip nhrp map 100.1.1.4 192.168.4.4
R1(config-if)#end

R2(config)#interface tunnel 1
R2(config-if)#ip address 100.1.1.2 255.255.255.0
R2(config-if)#tunnel source 192.168.2.2
R2(config-if)#tunnel destination 192.168.1.1
R2(config-if)#ip nhrp network-id 231
R2(config-if)#ip nhrp map 100.1.1.1 192.168.1.1
R2(config-if)#end

R3(config)#interface tunnel 1
R3(config-if)#ip address 100.1.1.3 255.255.255.0
R3(config-if)#tunnel source 192.168.3.3
R3(config-if)#tunnel destination 192.168.1.1
R3(config-if)#ip nhrp network-id 321
R3(config-if)#ip nhrp map 100.1.1.1 192.168.1.1
R3(config-if)#END


R4(config)#interface tunnel 1

R4(config-if)#ip address 100.1.1.4 255.255.255.0

R4(config-if)#tunnel source 192.168.4.4

R4(config-if)#tunnel destination 192.168.1.1

R4(config-if)#ip nhrp network-id 432

R4(config-if)#ip nhrp map 100.1.1.1 192.168.1.1

R4(config-if)#end

R1#ping 2.2.2.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 48/69/132 ms


R1#traceroute 2.2.2.2
Type escape sequence to abort.
Tracing the route to 2.2.2.2
VRF info: (vrf in name/id, vrf out name/id)
  1 192.168.1.5 8 msec 52 msec 48 msec
  2 192.168.2.2 44 msec 48 msec 44 msec


R1#ping 3.3.3.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 3.3.3.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 48/57/76 ms


R1#traceroute 3.3.3.3
Type escape sequence to abort.
Tracing the route to 3.3.3.3
VRF info: (vrf in name/id, vrf out name/id)
  1 192.168.1.5 52 msec 48 msec 48 msec
  2 192.168.3.3 44 msec 52 msec 48 msec



R1#ping 4.4.4.4
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 4.4.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 48/54/72 ms



R1#traceroute 4.4.4.4
Type escape sequence to abort.
Tracing the route to 4.4.4.4
VRF info: (vrf in name/id, vrf out name/id)
  1 192.168.1.5 48 msec 44 msec 52 msec
  2 192.168.4.4 48 msec 48 msec 48 msec

R2#ping 1.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 44/53/72 ms



R2#traceroute 1.1.1.1

Type escape sequence to abort.

Tracing the route to 1.1.1.1

VRF info: (vrf in name/id, vrf out name/id)

  1 192.168.2.5 48 msec 48 msec 48 msec

  2 192.168.1.1 48 msec 48 msec 52 msec



R2#ping 3.3.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 3.3.3.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/46/52 ms




R2#traceroute 3.3.3.3

Type escape sequence to abort.

Tracing the route to 3.3.3.3

VRF info: (vrf in name/id, vrf out name/id)

  1 192.168.2.5 52 msec 104 msec 52 msec

  2 192.168.3.3 56 msec 52 msec 48 msec



R2#ping 4.4.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 4.4.4.4, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 48/59/92 ms




R2#traceroute 4.4.4.4

Type escape sequence to abort.

Tracing the route to 4.4.4.4

VRF info: (vrf in name/id, vrf out name/id)

  1 192.168.2.5 68 msec 76 msec 68 msec

  2 192.168.4.4 72 msec 72 msec 80 msec



( FROM ROUTER 1) :-






(FROM ROUTER 2 :-





(FROM ROUTER 3 :-





( FROM ROUTER 4):-




Thank you so much for visiting




Comments

Popular posts from this blog

What is Classification and marking? What is IP Precedence and DSCP Values? What is AF and EF?

  Classification and Marking Classification and marking are the processes of identifying the priority of each packet. This is the first step of QOS control and should be done near the source hosts. Classification is the process of identifying and categorising traffic into classes, typically based upon incoming interface IP precedence, DSCP Source or Destination address. Application classification is the most fundamental QOS building block. Without classification, all packets are treated the same.   The table lists the criteria of classification                                  Marking  Marking is the QOS feature component that colours a packet so it can be identified and distinguished from other packets in QOS treatment. Commonly used markers: link-layer: COS (ISL, 802.1q), MPLS EXP bits,...

OSPF default routing

  OSPF Default Route Configuring OSPF Default route is not a big problem. We have couple of options when we want to OSPF default route. Here is an example R1(config)#router ospf 1  R1(config-router)#default-information originate ?   always       Always advertise default route   metric       OSPF default metric   metric-type  OSPF metric type for default routes   route-map    Route-map reference   <cr> We can change numbers of things for example metric or metric type but most of the people forget about the most important thing is the always keyword.  If we add the always command this feature advertises the default route even if we do not have in our routing table. It will look like that route is installed in routing table.   When we use the default information originate we can advertise a default route in OSPF. But OSPF won’t...

BGP Local preference configuration

BGP Local preference (Local_Pref) Path attribute gives the router inside a single autonomous system a value that they can set per-route and advertise to all iBGP routers inside the autonomous system, so that all routers in the autonomous system agree about which routers is the best exit point for packet destined for that prefix. Local preference (Local_Pref) is the second BGP attribute. We can use the local preference to choose the outbound external BGP path. Local preference is sent to all internal BGP (iBGP) routers in our autonomous system. Local preference (Local_Pref) is not exchanged between external BGP routers. It’s a well-known and discretionary BGP attribute. Default value is 100. The path with the highest local preference is desirable  Topology:- TASK: To reach 50.1.1.1, 15.0.0.1 network router 2 and router 3 using 3.1.1.2 path ( AS 65144) because it has less numbers of au...